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Lower bounds have been set on the mean-square errors i n  unbiased e s t i -  

mates of such parameters of an incoherently radiating object as i ts  radiance, 

i ts  position, and the frequency of its l ight .  

quantum nature of the l ight  from both object and background. 

The bounds take into account the 



A telescope has three primary functions: detection, resolution, and 

parameter estimation. 

fied class are present in the field of view. Resolution requires a decision 

whether two or more close objects are present or whether only one is present. 

Parameter estimation occurs when certain characteristics of the object, such 

as its position, its absolute radiance, or its size, are measured. Our work 

during the past quarter has concerned this third function of an optical system. 

Detection involves deciding whether objects of a speci- 

Estimates of object parameters are inevitably in error because of noise 

in detectors, graininess of film, background radiation, and the stochastic 

nature of the light from the object itself. 

mitigating or avoiding some of these sources of error. 

finer emulsions might be sought. 

mum error that is due to the quantum nature of the electromagnetic field. 

Various means can be conceived of 

Quieter detectors and 

There remains, however, an irreducible mini- 

The radiant power Po of a star could be estimated, for instance, by 

somehow counting the total number n of photons that arrive from it during 

the observation interval. 

star is isolated in a cold, black sky, the number n has a Poisson distribu- 

tion with mean value Ns. Since Ns is proportional to the radiant power, it 

is an estimate of Ns that is needed, and the best estimate is simply the num- 

ber n itself. This number n, though an unbiased estimate of Ns, will seldom 

equal Ns exactly. 

In the absence of background radiation, as when the 

The mean-square error ((n - Ns)2>, which is the variance 

of 

in 

the Poisson distribution, is equal to 

the estimate Po of Po is therefore 
Ns. The relative mean-square error 

(P, - Po)2/Po2 = N S/NS2' 1 /Ns 
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I t  can be shown that no scheme for  obtaining an unbiased estimate of the 

radiant power Po can yield a smaller relative mean-square error than Ns-l  . 
I t  is  with problems of t h i s  nature that we have been dealing. We have 

treated estimates of the radiance of an object; of the frequency of its l igh t ,  

taken to  be quasimonochromatic; and of its position. 

worked out for  the mean-square errors i n  unbiased estimates of such parameters, 

as functions of the bandwidth of the object l ight ,  the duration of the obser- 

vation interval, the coherence of the object l ight  at  the aperture of the 

instrument, and the mean numbers of photons received from object and back- 

ground. 

Lower bounds have been 

When the background vanishes, the errors in  estimates are due only t o  

The relative the quantum fluctuations of the l ight  from the object i t s e l f .  

mean-square error i n  an estimate of radiance is then bounded below by N s - l  , 
as ju s t  described, 

the object. 

Ns being the average to t a l  number of photons received from 

The mean-square error i n  an estimate of frequency is  a t  least  as 

great as ZW2/Ns, where W is  the bandwidth of the object l ight .  

bounds are independent of the degree of f i rs t -order  coherence of the l ight .  

Both these 

The mean-square error  of an estimate of the angular position of a point 

source is, under quantum-limited conditions, a t  l eas t  equal t o  N -l(lta)-2, 

where k = 2n/h is the propagation constant and a is the diameter of the aper- 

ture of the optical system. This bound is weakly dependent on the degree of 

coherence of the object l igh t  a t  the aperture when the object is larger than 

S 

a point source, 

When background l igh t ’  is also present the minimum mean-square errors 

are greater. 

the formulas we have obtained become equivalent to those derived on the basis 

When the effective temperature of the background is very high, 
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of classical  s t a t i s t i c s .  

Details are given in the attached preprint. 

Personnel note: The graduate assistant employed under th i s  grant beginning 

w i t h  the Fall quarter, 1968, left  school i n  mid-April because of the threat 

imposed by the draf t .  
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Abstract 

By means of the quantum-mechanical form of the Cram&- 

Rao inequality, a lower bound is set to  the mean-square error  

i n  an unbiased estimate of a parameter of an incoherently 

radiating object observed i n  the presence of thermal back- 

ground l igh t  by an optical system'admitting l ight  through a 

f i n i t e  aperture. 

and position of the object are specifically analyzed. 

bounds reduce i n  the classical limit to  those previously 

obtained, but are valid i n  the quantum l i m i t  as well. 

the background vanishes, the bounds depend only weakly on 

the effective number of independent spat ia l  and temporal 

degrees of freedom of the object l ight  a t  the aperture. 

Estimates of absolute radiance, frequency, 

The 

When 
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An optical  instrument such as a camera o r  telescope not only 

detects objects i n  i ts  f i e ld  of view, but a l so  fac i l i t a tes  measuring 

certain of the i r  parameters. Typical parameters are the absolute radi- 

ance of an object, i ts  diameter, the coordinates of i t s  center, and-- 

i f  i t s  l igh t  is quasimonochromatic--its frequency or wavelength. 

Estimates of parameters are always subject to  random and systematic 

errors. If  measurements are made on images recorded on photographic 

f i l m ,  the granularity of the film and inaccuracies i n  specifying i ts  

H-D curves introduce error. When photosensitive surfaces are used, as 

i n  image intensif iers ,  emission fluctuations and dark currents create 

random noise. 

inated, but one w i l l  always remain, the stochastic nature of the inci-  

dent l ight  itself. 

Many of these causes of error might i n  principle be elim- 

The insurmountable error due t o  the stochastic properties of 

l ight  can be assessed by regarding an optical instrument as processing 

the electromagnetic f i e ld  a t  i ts  aperture. 

a l l  possible instruments that  might analyze that f i e ld  and produce an 

We envision the class of 

estimate of the parameter i n  question. The methods of s t a t i s t i c s  permit 

us to  calculate a lower bound t o  the mean-square error i n  an unbiased 

estimate of a parameter i n  terms of the probability distributions of the 

incident l i gh t  f ie ld .  This has already been done f o r  incoherent objects 

whose l igh t  is received i n  the presence of strong enough background 

l igh t  so that the net f i e l d  can be treated by the methods of classical  

electromagnetism. The bound was based on the Crm&-Rao inequality 

of conventional s t a t i s t i c s .  
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Here we shal l  derive corresponding lower bounds that  apply when 

the l ight  is so weak that  the quantum-mechanical properties of the f i e ld  

must be taken into account. The accuracy of parameter estimates is now 

limited by the quantum fluctuations arising from the photonic nature of 

the l ight  from the object and the background. 

The same conditions w i l l  be postulated as i n  our analysis of the 
3 detectabil i ty of incoherent objects by a quantum-limited optical system. 

The l ight  f i e ld  a t  the aperture of the optical instrument is observed 

fo r  a time T much longer than the reciprocal w-’ of the bandwidth of 

the object l ight .  

both a wavelength of the object l ight  and the correlation length of the 

thermal background l ight .  

greater than that  of the l igh t  from the object. 

The diameter of the aperture is  much greater than 

The bandwidth of the background l ight  is much 

Section I w i l l  review the specification of the f ie lds  due t o  ob- 

ject and background. In Section 

I1 the quantum-mechanical form of the Cram&-Rao inequality is  used to  

derive a general formula for  the lower bound on the mean-square error i n  

an unbiased estimate of a parameter. 4 9 5  

estimation when the object l igh t  is spat ia l ly  incoherent a t  the aperture; 

Section I V  takes the object l ight  as having complete first-order coher- 

ence. 

and i ts  position are analyzed. Section V deals specifically with estimates 

of radiance and frequency of a uniform circular object whose l ight  is 

received a t  a circular aperture. 

The notation is the same as i n  III.3 

Section 111 t rea ts  parameter 

Estimates of the absolute radiance of an object, its frequency, 
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I .  The Aperture Field 

The electromagnetic f ie ld ,  taken fo r  simplicity as a scalar,  is 

represented by the function $ ( r t Y  t) of coordinates r' = (r, z> 

and time t . Here r is a 2-vector of coordinates i n  a plane paral le l  

t o  the aperture and normal t o  the z-axis, which points toward the object. 

The f i e ld  is decomposed into i ts  positive- and negative-frequency parts,  

VJ ( K T ,  t) = ++ Q l y  t> + IJ- ( F l y  t) Y (1.1) 

which are hermitian-conjugate quantum-mechanical operators. 

coherence function of the f i e ld  i s  defined by 

The mutual 

(P ($ t l  ; :;Y t2 ; e >  = ~r P + -  (r;, t2> $+ ( z ; ,  tl) , (1.21 

where p = p ( e )  i s  i t s  quantum-mechanical density operator and "Tr" 

stands for  the trace. 

function depend on the parameter e t o  be estimated. 

The density operator and the mutual coherence 

Onto the aperture f a l l s  l igh t  both from the background and from 

an incoherent object whose parameter e is the estimandum. As the ob- 

j ec t  and background radiate independently, the mutual coherence function 

i n  Eq. (1.2) is the sum of two corresponding terms, 

(Henceforth the subscript 0 refers t o  the background, s t o  the 

object l igh t ,  or "signal";) 

z = R 

The object is  assumed to  l i e  i n  the plane 

f a r  away in  the z-direction; as a resul t ,  the mutual coherence 

function of i t s  l igh t  has, a t  the aperture, the form 
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Ips (f$ t l  ; E;, t2 ; e )  = 

(zly t l  ; r2, t ; e )  e x p  [-in (tl-t2> - in (z1-z2> / c l , ( l . 4 )  
2 

where Q is the central angular frequency of its spectrum and c is 

the velocity of l ight .  

Because the l igh t  from the object is  a stationary stochastic 

is  a function of t and t only through t - t v i  1 2 1 2 
process , 

and it can be expressed i n  terms of i ts  Fourier transform as 

9; (El9 t l  ; E,, t2 ; e >  = 

@,(El. r -2 ; w ; e )  e x p  [-iw (tl-t2)] d w  / 2n . (1.5) I: - 
Under the assumption that  the object l ight  is cross-spectrally pure, the 

transform ( p S  
6 can be decomposed into a spat ia l  and a temporal par t ,  

Q s  (El3 f2 ; w ; 8) = (P, (351, E2 ; e )  x (w  ; e ) ,  (1 6) 

where the angular frequency w is measured from R . The temporal spectral 

density x (w  ; e )  is  so normalized that 

X ( w ;  8 )  dw / 2 n = 1 .  1: 
The bandwidth W cf the object spectrum is defined by 

co 

W = { [ X ( w  ; 8 )  l 2  d w  / 271. 1 - l  
-00 

- -cf .  I ,  Eq. (1.5). The to t a l  energy received from the object during 

the observation interval is  

F 

A 

where A stands for the aperture of the optical i n s t m e n t .  
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The background l ight ,  on the other hand, is taken'to have the 

properties of thermal l igh t  of absolute temperature . The average 

number N of photons per mode of the f i e ld  is given by the Planck 

formula, 

Z= [exp (5 D / K T )  - 11-1 , (1.10) 

where D is the frequency of the mode, K is Boltzmann's constant, and 

ii is Planck's constant h / 2.rr . 
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11. The Quantum-Mechanical CrambRao Inequality 

In order t o  s e t  a lower bound t o  the accuracy with which the para- 

meter e can be estimated, we suppose the optical instrument replaced 

by an ideal receiver, which consists of a large lossless cavity having 

the same aperture.7 The cavity is  i n i t i a l l y  closed and empty. During 

the observation interval ( 0  T) , the aperture is opened and the inci-  

dent l ight  allowed t o  enter the cavity. A t  time t = T the aperture is 

closed, and a t  some time 

are made of the f i e ld  within the receiver. The f i e ld  a t  that  time is  

t thereafter, the best possible measurements 

described by a density operator p(e )  depending on the estimandm e . 
Once again we specify the f i e ld  in the receiver i n  terms of i ts  

normal modes u (g) exp (-iwmt) 4 the functions u ( r )  are solutions m rc, m -  
of the Helmholtz equation corresponding t o  angular frequency am --see 

111, Eq. (3.11). 

ators a , so normalized that  their  commutation relations are m 

- 
The amplitudes of the modes are, as before, the oper- 

8 

+ + 
[ak am+] = ak am - am ak = 6km , 

These mode amplitudes are l inearly related t o  the f i e ld  a t  the aperture 

during the interval (0 , T) 

where 0 (1) 

(3.21). 

is the integro-differential operator defined i n  111, Eq. 
m 
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Both the background and the object consist of a myriad of indepen- 

dently and randomly radiating ions and electrons. 

of the field they generate, therefore, has in the P-representation a 

gaussian form specified by the correlation matrix 

The density operator 

9 

CP(e> N = CP, + ' p s ( O >  

CP ( 0 )  = T r [ p ( e )  am akl (2.31 

of the amplitudes of the normal modes. Its elements are 
+ 

km - - 
which are bilinearly related, through the operators Ok(l )  , 0 *(2 )  

to the mutual coherence function cp(r; - , t l  ; E; t 2  ; e )  of the field 

at the aperture during the interval (0 , T ) .  

m - - 

A lower bound to the mean-square error in an unbiased estimate 6 

of the parameter 8 

Cramer-Rao inequality, 

is set by the quantun-mechanical counterpart of the 
c 4 

(2.4) 
2 -1 ~ ( 6  - e l 2  2 [ T r  PL 3 = [ T r ( L  ap / a e 1 1 - l ~  

where E stands for expectation and L is the symmetrized logarithmic 

derivative of p ( 0 )  with respect to 0 , defined by 
- 

2 ap / a e  = PL + LP . (2.51 

The derivatives are evaluated at the true value of the estimandum. 

When the gaussian form of the density operator ~ ( 8 )  is used, the 
5 inequality becomes 

9 (2.61 
-1 q 6  - e > 2  * A~ 

= ~ r [ f i , ( a g ~  / a e > l  (2.71 

289 / ae = we(: + (PI 4- + ? > f i e  (p Y 12.8) 

where A e  - is the solution of the matrix equation 

-S 

I - being the identity matrix. It is convenient to put 
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2 
A~ = a H ( e ,  , e 2 )  / ae ,  ae  I 2 e l  = e2 = e 9 

where 

(2.91 

H ( e ,  , e,> = ~r & ( e , >  cp(e2) (2.10) 
corresponds to the ambiguity function of signal estimation theory. 10 

Here $ ( e  ) is the solution of the matrix equation 
1 

2 'P -S ( 0 , )  = ? ( e >  ml) [I - + cp(e)i -t. 

r; + cpm1 &(e1) cpw Y 

and A is a & ( e , )  / a e ,  evaluzted at e = e . -.e 1 

(2.11) 

It is now necessary to translate this prescription into a form 

involving the mutual coherence functions of the field at the aperture of 

the observing instrument. 

I11 and IV, and it is given in Appendix A. 

that the bandwidth W 

the background light, I< 2" / H. In addition, the diameter a of the 

aperture is much greater than both a wavelength 2 ~ r c  / 52 = 2 ~ r  / k of 

the object light and the correlation length +IC / K T ,  of the thermal 

field.'' 

and - k a > > l  . It is only at very low temperatures that 6isz / KTbe- 

comes comparable with ka , and Eq. (1.10) shows that the average n u -  

The analysis is much like that in 111, Sections 

As in 111, it is assumed 

of the object light is much smaller than that of 

The condition a >>&c / K T  is equivalent to ka >>;hR / K T  , 

ber N(n) of thermal photons per mode is thereupon exponentially 
small, so that whatever correlation the thermal background field may 

have will be inconsequential. 

The result of our translation is most conveniently expressed in 

terms of the orthonormal set of eigenfunctions 

equation 

nk(r) of the integral 

(2.12) 2 
v k rl k (r -1 1 = (2QcT / 5) ' P s ( ~ l  ; e)qk(r2> d F2 
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whose eigenvalues vk are pure numbers. The functions y,(r , r ; O i l 2  "1 -2  

i = 1 , 2  are expanded in  a 

= (Ti v,(:,9 E2 ; ei) 

and when ei = e ,  as n I1 

double series of these eigenfunctions, 
02 m 

(2.14) 

as shown i n  Appendix A. In exceptional cases it may be possible t o  solve 

the integral equation (All) and evaluate the ambiguity function by Eq. 

(A12). 

If there are several parameters (e1 ,  e 2 ,  . . . en) = e t o  be 

estimated a t  the same time, or i f  only one is  t o  be estimated when the 

rest are unknown, generalized forms of the Cram&-Rao inequality 12,13 

5 and i ts  quantum counterpart apply. The resulting bounds are best 

described i n  terms of the concentration ell ipsoid,  whose matrix can be 

derived from the ambiguity function H(g1 

but with e l  and e2 replaced by the se t s  of parameters e and e . 
The method of specifying the bounds is straightforward and has been 

described elsewhere. 

e2) , defined as i n  Eq. (2.15), 

-1 -2  

5 
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The Classical L i m i t  

14  The sum of the eigenvalues of the integral equation (2.12) is 

co 

l v k  = I;Is = Es / 3% 
k= 1 

(2.16) 

where N~ 

during (0 , T) . When the object l ight  possesses complete f i rs t -order  

spat ia l  coherence a t  the aperture, v1 = N and vk = 0 ,  k > 1 . When, 

on the other hand, the object l ight  has only s l ight  spat ia l  coherence, 

a rough approximation se t s  the M largest eigenvalues equal to  

U = N 

is the average number of photons received from the object 

S 

1 4  / M and the r e s t  equal t o  zero, where 
S 

with 3; the spat ia l  factor for  detection, defined by 

In the classical  l i m i t ,  ICY >> 3% and N >> 1 

(2.17) 

I ,  Eq. (3.8). 

. For object 

l ight  providing an effective signal-to-noise ra t io  of the order of 1-- 

see 111, Eq. (5.13) - - , N is of the order of N(MWT) 2 . Since the 

spectral density X(W ; e )  

v X ( W  ; e) T 

1 

S 

is  of the order of w-’ , the terms 
-1 

i n  Eq. (2.15) w i l l  be of the order of Ns / MWT - 
1 k 

JIT(MwT)-~ << Rf when MWT >> 1 . For objects of moderate detectabil i ty,  

therefore, we can s e t  the bracket i n  Eq. (2.15) equal t o  

double summation can then be evaluated by using Eq. (2.13) and the 

orthonormality of the eigenfunctions qk(r) t o  obtain the ambiguity 

function 

Jf . The 
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A 

When this is used in Eqs. (2.6) and (2.9),  the same lower bound is ob- 

tained as in I, Section VI for the mean-square error in an unbiased 

estimate of a parameter e 

system. 

of an object by a background-limited optical 
15  
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111. Estimation with Low Spatial Coherence 

Turning now t o  the estimation of object parameters under a quantum 

limitation, we f i r s t  consider object l igh t  with a low degree of spat ia l  

coherence a t  the aperture, and we work out a rough approximation to  the 

ambiguity function H ( 6 ,  , e,) . The nurnber M of effectively indepen- 

dent spat ia l  degrees of freedom is now large, and the first M eigen- 

values v can be s e t  equal to i7 = M / M in  Eq. (2.15). With M >> 1, k S 

the double sum can again be evaluated as in  Eq. (2 .18) ,  and we obtain 

A 

When quantum limitations are significant, N<<1 but N and 
S 

flMWT may be of the order of I, w i t h  N / MWT of the order of fir 

and very small.14 Eq. (3.1) can then be simplified t o  read 
S 

A 
where o= N s / N M W T  . 
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For estimates of parameters 8 , such as absolute radiance and 

position, that  do not enter the spectral density x(w ; e)  = ~ ( w )  , the 

lower bounds on the mean-square error derived from Eq. (3 .2)  have the 

same form as those obtained i n  I ,  Section V I ,  except that  the ra t io  

(N / E) must be replaced by [Ns MWT f l  (D)] , where the function 
1 - -  

2 -1 
fl ( D )  = DW [ X ( w ) ]  [l -I- %rWX(w)l  d w  / 2n (3.4) 

-00 

depends on the form of the spectral density of the object l ight .  

D<< 1 , f l  (a) D ,  and (N / E) i s  replaced by N / Ns . For 

D , f ( D )  A 1 . In particular,  fo r  an estimate of the absolute 

radiance Bo of the object, 

For 

% 

1 

which becomes independent of the number MWT 

degrees of freedom when the background vanishes 

of spat ia l  and temporal 

( Jf= 0) . 

which 

which 

error 

it is 

When the object spectrum has a rectangular form, 

x ( w )  = w - l  , I w I  < nw ; x(w) = 0 ,  I w I  > nW , 

f ,(D> = 06’/ ( D +  1) 3 (3 .6)  

is plotted as a dashed curve i n  Fig. 1. For a Lorentz spectrum, 

( 3 . 7 )  

(3 .8)  

is plotted as a solid curve i n  Fig. 1. 

attainable is smaller when the spectrum is rectangular than when 

The minimum mean-square 

Lorentz. 
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Estimation of Frequency 

In spectroscopy it may be necessary t o  measure the central f re -  

quency o r  wavelength of a weak spectral l ine.  

mating the location wo 

According t o  Eqs. (2.6),  (2.9), and (3.2),  the relative mean-square 

error of an unbiased estimate 6, is  bounded by 

This corresponds t o  e s t i -  

of the spectral density X(w ; w o )  = X(W - w0) . 

where 
2 -1 m 

f2(D) = DW3 I [X'(w ) I  [l + & W X ( w ) ]  d w  / 2n (3.10) 
-W 

the prime denoting differentiation with respect t o  w . 
For the Lorentz spectrum i n  Eq. (3.7) t h i s  is 

f2(L3) = [3  + (1 + 2 0 1 5  1 [l + (1 + 2 8 ) s  1 y (3.11) 

For D<< 1 , f2(D f 8-/2 ; for D>> 1 , 

. The corresponding bound i n  the classical  l i m i t  N>>1 is 

(3.12) 

-3 1 

which is plotted in  Fig. 1. 
0 1  

2 
f2(D) = - 

2 
E ( i o  - wo) /W2 2(Jl/ l /NSl2 MWT , 

where N / ,  = E/N, M = 3-2 i n  the notation of I . 
S 

The lower bounds on the mean-square errors i n  the estimates of both 

absolute radiance Bo and frequency w o  become independent of the num- 

ber MWT of spat ia l  and temporal degrees of freedom when the background 

vanishes 

cesses involved, an independent derivation is  presented i n  Appendix B, 

( M= 0 ) .  As there may be some question about the l i m i t  pro- 

where it is shown that  these results are valid when NWT >> Ns . 
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Estimation of Position 

Por the estimates of the coordinates ( E ~  E ~ )  of the center of 

a uniformly radiating object of radius b , the mean-square error is 

subject i n  the classical 1in;it t o  the lower bound 
2 2  - cX) / 6  2 2 ( f l r / N  )’ TW[‘C)(a)I-’ 

S Y 

c1 = b/6 6 = R/ka (3.13) 

where ‘7l (a) is  given i n  I,  Eq. (6.5), and a is  the radius of the 

circular aperture. For a >>I the integral there can be approximated 

t o  yield 
2 3  

7 _ ) ( ( x )  64/3n  a . (3.14) 

By I ,  Eq. (3.10), on the other hand, the number M of independent 

spat ia l  degrees of freedom is, for  a >>I given by 16 

(3.15) -1 2 
3 ’ = M  S 4 / a  , 

Hence the classical  bound is 

(3.16) - 2 / 6  2 p 3 2  ( J V ’ / N ~ ) ~  TWM 9 2.  

In the quantum limit, therefore, for  M > > 1  , 
(3.17) 2 2 3 2  -1 1/2 - x  - EX> / 6  q~ [ N s f l ( D ) l  M 

which i n  the l i m i t  At - 0 L3 1 depends weakly on the number M of 

independent spat ia l  degrees of freedom, and not a t  a l l  on WT . 
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IV. Estimation with First-Order Coherence 

When the object is a point source far from the aperture, its l ight  

upon reaching the aperture w i l l  possess f i rs t -order  spat ia l  coherence. 

L e t  a source of t o t a l  radiant power 

A t  the aperture i t s  l igh t  w i l l  have a mutual coherence function whose 

spat ia l  par t  is  

Bo be located a t  the point (E R) . - 

'P,(z,, F~ ; 5 )  = (5N S /2QcTA) 

&(: , 5 )  = exp(ik1r - cI2/2R) , k = Q/c . (4.2) 

5 )  1 5 ? * ( $ ~ ,  5 )  (4 1) 

with 

Here, by Eq. ( l a g ) ,  

(4.3) 
2 N = BOAT/4nR h R  

S 

is the average to t a l  number of photons received during the interval 

(0 T) . In order t o  derive Eq. (4.1), we put B(u) - = B O S ( u  - E) into 

I,  Eq. (1.8) and use the point-spread function i n  I ,  Eq. (1.9), dividing 

by 2 ~ ~ c  t o  convert t o  the normalization i n  this paper. 

When the object l igh t  has complete first-order spat ia l  coherence, 

the first eigenvalue of Eq. (2.12) is  v1 = Ns , and i ts  associated 

eigenfunction is 

~ ~ ( 5 )  = A-' &(r, - -  0) . (4.4) 

The remaining eigenvalues vanish, and as their  eigenfunctions we can take 

an arbitrary set of functions orthonormal among themselves and t o  ql(r) - 
over the aperture A . 

For estimates of the radiant power Bo and the frequency w o  of 

a point source located on the z-axis ( E  = 0) , Eq. (2.14) applies, and 
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the series for  the ambiguity function i n  Eq. (2.15) contains a single 

term, 

For an estimate of radiant power Bo , ul(ei) = ( B i / B o j  ul, i =  

1 , 2 ,  and after substitution into Eq. (2.9) and the differentiations 

with respect t o  el = B1 , e2 = B , we put B1 = B2 = Bo . We find that 
2 

an unbiased estimate 

bounded below by 

of radiance has a relative mean-square error 
0 

Y 14 6 )  
2 2  E ( i o  - Bo)  /Bo [Nsf,(B)l'l 

where f , ( B )  is given i n  Eq. (3.4) ,  but d? is now 

= N / N W T  . (4.7) 
S 

Before integrating, we have again passed to  the quantum l i m i t  and set 

Af<<1 , Ns/WT <<1 i n  Eq. (4.5).  The graphs i n  Fig. 1 apply with M = 1. 

For an estimate of frequency, u ( e  ) = ul and X(w ; ei) = 
1 1  

X ( W  - ai) i = 1 , 2 ,  with w and w2 s e t  equal t o  w o  af te r  the differ-  

entiations in  Eq. (2 .9) .  We find i n  the quantum l i m i t ,  
1 

(4.8) 
2 2  !(Go - w o >  /W [Nsf2(B)1-' 

where f2(D) is given by Eq. (3.10) and graphed i n  Fig. 1. Thus the 

approximate lower bounds on the mean-square errors i n  estimates of 

absolute radiance and frequency obtained i n  Section I11 for  M > > 1  be- 

come exact for  point objects if  M is set equal t o  l. 
? 
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Estimation of Position 

The coordinates ( E ~  cy) = 5 of the point source in the plane 

z = R can be estimated independently when the aperture is circular and 

the object is located near the optical axis. 

evaluate the coefficients 

It is now necessary to 

of the expansion in Eq.  (2.13). 

stituted into Eq.  (2.9), we shall differentiate these coefficients with 

After the ambiguity function is sub- 

or E (i = 1, 21, and set - = E = o . 
-2  - respect to E 

ix i Y  
We find from Eq.  ( 4 * 1 ) ,  

= N e (E.) em*(si) (4.10) 'km -1 s k -1 

A 
In particular, from Eq.  (4.4)9 

A 
in terms of the Fourier transform 

(4.11) 

(4.12) 

(4.13) 2 
$A(?) = A-1 J exp(ikyeL/R) d r 

A 

of the indicator function of the aperture--see I, Eq. (A4). For a cir- 

cular aperture of radius A, 
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where 6 = R / k a  and J1(x) is the Bessel function of order 1. 
2 2 2 

The term p l l ( ~ l ) p l l ( ~ 2 )  = Nslel(sl) 1 lel(~2) I in the sum in 

Eq. (2.15) will thus yield 0 after substitution into Eq. (2.9), differ- 

entiation, and the setting of E and g2 equal t o  0 . -1 - 
Since v = 0 ,  k > 1 , we can write Eq. (2.15) as applied to  the k 

estimation of or E in the form 
Y 

the last term contributing 0 to the bound. As in Eq. (2.18),  

(4.15) 

(4.16) 

In addition, we obtain by using the orthonormality of the eigenfunctions 

2 2 2  
X d g ld  S2d ,r3= 
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(4.17) 

When these are put into Eq. (4.15) and the result into Eq. (2.9), we find 

E I2/S2 2 2 2  
E ( i x  -. 
2T N -2{1 [X(w)I2 [JV(JV'+ 1) 4- (fl+ $1 N X ( w )  T 1 

- E ) / 6  = E(fy - 
xoo Y 

-1 -1 
dw/2~)"~. 

S S 
(4.18) -a 

In the classical limit N>>1 , this becomes 
E(ix - E X )2/62 2 ~ ( J V ' / N ~ ) ~  WT , (4.19) 

as in Eq. (3.13), in which V ( a )  = 1 because the object light is com- 

pletely coherent in first order. 

In the quantum limit, on the other hand, N<<1 , N ~ / W T  << 1 , 

the bound becomes 

(4.20) 

where 

f (Lo = f 1(D/2). (4.21) 
3 

The function f3(D) is plotted versus %r in Fig. 1 for the Lorentz 

spectrum in Eq. (3.7). 

The position of a point source might be estimated by focusing its 

light on a photosensitive surface and processing the numbers of photo- 

electrons emitted from each of many elements of the surface. The joint 

probability distribution of these numbers would be maximized with respect 

to the parameters E~ and E to provide maximum-likelihood estimates. 
Y 

The mean-square error of such estimates has been calculated 

present notation it is 

1 7  ; in our 
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(4.22) 

where rl is the quantum efficiency of the surface, 0 < rl < 1 . It was 
assumed that the object light is much weaker than that from the back- 

ground, but that this weakness is compensated by a long observation time 

T 

In the corresponding circumstances, our bound in Eq. (4.19) becomes 

In addition, the spectrum was taken as rectangular of width W . 

(4.23) 

which lies below the mean-square error given by Eq. (4.22). 

Cram&-Rao bounds on the mean-square error in estimating the position 

of a stellar image on a photosensitive surface have been worked out by 

General 

Farrell, with numerical results for images with a gaussian pattern of 

illuminance.18 The difference between those essays and the present one 

lies in the nature of the primary data. There the data are numbers of 

photoelectrons emitted from the image plane; here they are the values of 

the electromagnetic field at the aperture of the optical instrument, 

whatever it may be. 
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V. Estimation for Circular Objects 

A quasimonochromatic circular object of uniform radiance Bo and 

radius b is centered at ( 0 ,  I R) . Its light falls on a circular aper- 

ture of radius a . 
unbiased estimates of its radiance B o  and its frequency wo The 

spatial part cp (r 

at the aperture is, by (I), Eqs. (1.8) and (1.9), 

We seek lower bounds on the mean-square errors in 

of the mutual coherence function of its light s - 1 )  9 

where 0 denotes the circular object. 

The integral equation (2.12) can now be identified with the two- 

dimensional one studied by Slepian.19 The eigenfunctions of Slepian's 

Eq. (12) are 
2 2  

+k($ = rl k -  (ax) expC-ika x / 2R)  

and the eigenvalues are 
= (a 2 / 4 )  V g / N s '  

Ak 

(5 2) 

(5 * 3) 

where a = kab/R is equivalent to Slepian's parameter c . The kernel 

of Slepian's integral equation (12) is 

C 

where C denotes the unit circle. 
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In the quantum l i m i t  &<<1 , the mean-square errors in unbiased 

estimates 6 and Go of radiahce and frequency are bounded below by 
0 

(5 .5 )  
!(go - Bo> 2 2  / B o  [ N s v l ( a ; s ) l ' l  , 

!Go - a,> /w I N s 2 ) 2 ( a ; B ) l - 1  (5.6) 

B =  N S fNwr , (5.7) 

with 

where by Eq. (2.15), (3.8) and (3.10), 

the functions f ,  and f being given by Eqs. (3.4) and (3.10). 

When a single eigenvalue is significant, we get the bounds i n  Eqs. (4.6) 

and (4.8); when M > > 1  , those i n  Eqs. (3.5) and (3.9) appear. 

2 

The twelve largest  eigenvalues Xk 

as functions of a . 2o For values of a 

calculated the eigenvalues by Lagrange's 

19 have been tabulated by Slepian 

missing from the tables we 

interpolation formula applied t o  

Rn(-Rn x k ) .  
approximat ions 

The eigenvalues of higher order are small, and for  them the 

fl(vkB/Ns> v,B/Ns , (5.9) 

f2(l)keD/Ns) vk&/2 Ns (5.10) 

can be made. 

eigenvalues, we write the i r  contribution t o  Q1 ( a ;  &) as 

Indicating by a prime the summation over these remaining 

AV!(a; D >  = 1' ( 'klNSl2D ; (5.11) 

a similar formula holds for  A U,(a; a)  . 
We observe that  the squared spat ia l  factor 32 is given by Eq. 

(2.17) and (111), Eq. (5.10) as 
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2 
co 

[ 3 ( a ) 1 2 =  1 ('kINs) Y 

k=l  
and th i s  we have calculated from (I), Eq. (3.10) .16 By summing the squares 

of the eigenvalues given i n  Slepian's tables, multiplying by 

and subtracting from [3 ( a ) I2  , we can evaluate 1 ( V ~ / N ~ ) ~  i n  Eq. 

(5.11) and thus supply approximately the missing terms i n  Eq. (5.8). 

2 2  
(41'01 ) , 

I 

By th i s  procedure the functions v. ( a ;  B) , i = 1, 2 , have been 
1 

calculated for  three representative values of 

plotted versus 

curves show that the larger a (the smaller N') , the less sensitive 

the bounds are to  the number M of spat ia l  degrees of freedom of the 

object l igh t  a t  the aperture. 

B= N I N W T  ; they are 

The 
S 

a = kab/R . A Lorentz spectrum was postulated. 
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Appendix A 

Derivation of Bounds 

The translation of E q s .  (2.10) and (2.11) into forms involving the 

f i e ld  at  the aperture is effected by means of the function 

L(:;, t l  ; r r  -2  t2 ; e l >  = L l ( r i y  - t l  ; r; , t2) = 

X exp(-iw t + iw,t2) k i  - 
--cf. 111, Eq.  (4.3)--and the associated operators 

L 1 ( l ,  2) = 1 1 Ok*(l) Lkm(el) 0 ( 2 )  (A21 - -  m k m  - 
and 1(1, 2) , respectively defined l ike Q(1, 2) and 2(1, 2)  of 

111, Eqs .  (4.2) and (4.5). 

We observe the similar structures of Eq.  (2.11) and 111, Eq. (2.7) 

and conclude by a derivation of the same type as i n  111, !iIV that  the 

function L l ( r { ,  - t ; r '  t ) is the solution of an integro-differential 

equation of the same form as 111, Eq. (4.7), 
1 - 2 )  -2 

2(Ps'$ t l  ; r' -2 t2> = L p ,  3) cpb-;, t3  ; z;, t2 ; e )  

2L1(3, 4 )  (P(r;, t l  ; r '  -,' t3  ; e)  T(:p tg ; :;, t2 ; 0 ) .  

+ L1*(3, 2) ~ ( z : ,  t l  ; r '  - 3 '  t 3 ' * 0) + 

(A31 

Furthermore, we can use Eq.  (A2) and 111, Eq. (4.10) t o  write Eq. (2.10) 

as 
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(A41 
where n - is a uni t  vector normal to  the aperture, 

Because of Eq. ( l e 4 ) ,  we can argue as i n  111, Section IV that  the 

function L~ has the form 

L l ( f i ,  tl ; r '  - 2 '  t2) = L i ( r  -1' t 1 ' a 529 t2) 

x exp[-iQ(t - t ) -iQ(z - z 2 ) / c ]  
1 2 1 

and that we can put for  the mutual coherence function of the thermal 

are again being made tha t  the diameter of the aperture is much greater 

than the correlation length (-hc/KY) 

the bandwidth 'W 

bandwidth KY/% of the thermal l ight .  

of the thermal l ight ,  and that 

of the object l igh t  is  much less  than the effective 
11 

Eqs. (A3) and (A4) can then be simplified to  read 
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The temporal stationarity of the l igh t  f ie lds  and the great length 

of the observation interval 

bandwidths of object and background l ight  permit us to  replace the tem- 

poral part  of Eq.  (A8) by Fourier transforms. 

w i l l  to  good approximation be a function only of , and it w i l l  

have a Fourier transform L l ( r l ,  - r2 ; w )  defined as in  Eq. (1.5). Eqs .  

(A8) and (A9) can now be rewritten as 

(0 ,  T) as compared with the reciprocal 

As  a resul t ,  L l ( r l ,  t l  ; z2' t2) 

t 1 - t 2 

"(El .  z2 ; w ; e ) =  
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r2 ; w; e)  = @s(lly z2 ; a; $1 + @o(r ly  r2 ; W) Y 

r2 ; = (5/2fic> 6 2 ( r l  - f2> * (A131 

We now expand all functions in terms of the orthonormal eigenfunc- 

tions nk(?) of the two-dimensional integral equation (2.12). In par- 

ticular, we write 

and by Eq. (A13) and the closure property of the eigenfunctions n k ( r )  , 

When these are substituted into Eq. (All) and the orthonormality 

of the eigenfunctions is used, the equation 
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is obtained. From it we get the coefficients Akm(W;eI) 

substituted along with E q s .  (A14) and (Al5) into Eq. (A12) t o  obtain 

Eq. (2.15). 

, which are 
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Appendix B 

The Bound in the Absence of Background 

In the absence of any background light, the integral equation, Eq. 

(All), when written for an estimate of absolute radiance Bo , is 

(B1/BO) @s(:ly E2 ; a; Bo> = 

(Qc/-fl) 1 d2f3LL1(5. s3 ; a> @,(T3. 1: -2 ; w; B o >  + 

( 2 Q C / f d 2  11 d r - 3  d r - 4  @s(:l’ g3 ; a; B o >  L1(E3. F4 ; a> Qs(r4, F2 ; B o >  ; 

A 

@,(fly r3 ; w; Bo> L1(E3, g 2  ; a l l  + 

2 2  

(B1) AA 

This equation can be solved by 0 .  we have put 

iteration; its solution takes the form of a series, 

L l ( r l ,  r2 ; a> = (B1/BO) {(5/2Qc> 6 2 ( g 1  - s2) 

e l  = B19 e2 = B 2 ,  e = B 

- @s(zlY s2 ; a; B o )  + 
2 

(2Qc/*) 1 @&, f ; w; B o >  Qs(ry g2 ; a; B o >  d z - a * * )  (B2) 
A 

as can be verified by substituting it into Eq. (Bl). 

function is now, by Eq. (A12) with 

The ambiguity 

@ (r2. r ; w; B2) = (B2/BO) s -  -1 

X @ , ( S 2 ,  z1 ; a; B o ) )  
-2  

H(B,,  B2) = Bo B1B2(2QcT/- )  

2 
x { 1 as(:, r 3 a; B d r 

0 
A 
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Using Eq. (1.6) with 

degrees of freedom, Eq. (2.17), and the definition of the bandwidth W , 
Eq. (1.8), we finally obtain 

0 = Bo , the definition of the number M of spatial 

(B4) 
-2 

H(B1, B2) = Bo B,B2Ns[l - (Ns/MWT) + ... 1. 

When this is substituted into Eq. (2.9) and the result into Eq. ( 2 . 6 ) ,  

we find the lower bound 

(B5) 
-1 2 2  g B o  - B ~ >  / B ~  * N [i + (N~/MWT) + ...I. 

S 

When W T > > N s  , this reduces to the result in Eq. (3.5) with f,(a = 1. 

A similar derivation can be carried through for an estimate of 

frequency a,, , but not for an estimate of position. 
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Figure Captions 

Fig. 1. 

mean-square errors i n  unbiased estimates of absolute radiance, frequency, 

and position, versus B = Ns/NMWT . 
sol id  curves: Lorentz spectrum. 

Functions fim), i = 1, 2, 3 , appearing in  lower bounds on 

Dashed curve: rectangular spectrum; 

Fig. 2 .  Bounding functions wi(a;a)  for  mean-square errors i n  estimates 

of radiance (i = 1) and frequency (i = 2) of a circular object of mi- 

form radiance, versus a = kab/R . & = N /NWT = 0 .  l, l, 10. 
s 
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